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A B S T R A C T

This paper presents an optimization-based control scheme for generating online multi-vehicle coordination
behaviors to accomplish missions in indoor environments. The proposed control scheme relies on the use of
hierarchical task functions in terms of the multi-vehicle configuration variables. The task functions are related
to individual and group obstacle avoidance, reaching fixed targets, group trajectory tracking, maintaining
formations, enclosing the group within a geometric area, among others. The stack of hierarchical tasks
automatically handles possible conflicts between them. Quadratic programs are formulated for explicitly
solving inequality and equality task constraints at any hierarchy. In addition, a finite state machine is employed
to build complex group behaviors for successfully fulfilling group missions. The proposed control scheme is
demonstrated on two experiments with static and moving obstacles where a group composed by six vehicles
tracks a predefined trajectory for the center of mass of the group. In the second experiment, the group is asked
to clean the workspace by pushing movable objects.

1. Introduction

In recent years, the success of multi-vehicle systems (MVS) in in-
dustrial facilities has attracted more attention in robotics and control
communities (Wurman, D’Andrea, & Mountz, 2008). MVS represents
an important category of networked systems with potential applica-
tions in industrial warehouse environments for surveillance, inspection,
and transportation. The vehicles need to navigate in formations to
fulfill missions such as carrying packages, or even cleaning areas by
removing objects. In addition, MVS should be able to avoid collisions
with both static and moving obstacles while simultaneously achieving
their task objectives. Among the important challenges associated to
this class of control systems are the coordination (Fanti, Mangini,
Pedroncelli, & Ukovich, 2018; Kallem, Komoroski, & Kumar, 2013),
communication (Gutiérrez, Morales, & Nijmeijer, 2017; Oh, Park, &
Ahn, 2015), scheduling (Reveliotis & Roszkowska, 2011) and obstacle
avoidance (Olmi, Secchi, & Fantuzzi, 2011; Trujillo, Becerra, Gómez-
Gutiérrez, Ruiz-León, & Ramírez-Treviño, 2018) problems. Due to the
underlying complexity of these systems, available control architectures
commonly apply a two-stage approach, in which the path planning
problem is treated first. Then, a collision-free motion coordination is ex-
ecuted (Alonso-Mora, Baker, & Rus, 2017; Draganjac, Miklić, Kovačić,
Vasiljević, & Bogdan, 2016; Krnjak et al., 2015).

Centralized (Li, Liu, Xiao, Yu, & Zhang, 2017; Olmi et al., 2011) and
decentralized (Draganjac et al., 2016; Krnjak et al., 2015) path planning
algorithms have been suggested for automated guided vehicles (AGV).
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One of the main purposes has been to overcome collisions when a
picking or transportation task is assigned to each vehicle. Another
important concern has been to prevent conflicts between two or more
vehicles, in particular, deadlock situations (Reveliotis & Roszkowska,
2011). The use of finite state machines has been proposed to overcome
collisions as well as deadlocks during execution (Draganjac et al.,
2016).

Behavior-based control schemes for MVS have been also suggested
(Balch & Arkin, 1998). The behavioral null-space approach is able to
control multi-vehicle formation tasks while avoiding self-collisions (An-
tonelli, Arrichiello, & Chiaverini, 2009). Also, it has been extended
to accomplish task objectives in a predefined time regardless of the
initial state of the MVS (Arechavaleta, Morales-Díaz, Pérez-Villeda,
& Castelán, 2017). In Gracia et al. (2018), the null-space approach
has been applied to handle conflicts between task objectives while
performing cooperative object transportation maneuvers guided by a
human operator.

The proposed optimization-based control scheme solves behavioral
task objectives for one or multiple vehicles. However, the conflict reso-
lution method differs from both zone occupancy strategies (Fanti et al.,
2018; Krnjak et al., 2015) and the null-space approach. In particular,
we adopt the hierarchical quadratic programming (HQP) framework to
integrate the path planning and motion coordination problems, as it has
been demonstrated in Escande, Mansard, and Wieber (2014), Herzog
et al. (2016) and Kanoun, Lamiraux, and Wieber (2011), for humanoid
robots. The HQP handles strict hierarchical tasks composed by linear
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equality and inequality constraints (Kanoun et al., 2011). For designing
complex missions, such as cooperative object transportation, a finite
state machine is employed where each state represents a behavior
of the MVS. Each behavior or state is composed by a stack of task
objectives. The precise definition of tasks is given in Section 2. They are
mainly designed to avoid collisions, maintain formations, track moving
references and reach targets. The communication problem is treated
here in a centralized manner, however, hierarchical tasks can also be
defined in the context of decentralized schemes through consensus as
it is explored in Trujillo et al. (2018).

1.1. Problem formulation

The aim of this work is to solve an online constrained optimization
problem for driving the team of vehicles to destinations, or goal regions
in the environment populated with moving and static obstacles, while
keeping proximity constraints and avoiding collisions. The coordination
tasks assigned to the group account for trajectory tracking as well as
surrounding movable objects to transport them by multiple vehicles.

Let us consider a group of 𝑛 vehicles as:

 =
{

𝒒𝑖 ∣ 𝑖 = 1,… , 𝑛
}

(1)

where 𝒒𝑖 = [𝑥𝑖, 𝑦𝑖]𝑇 ∈ R2 is the configuration of 𝑖-vehicle with its
first-order dynamics:

�̇�𝑖 = 𝒖𝑖, 𝒖𝑖 ∈  ⊆ R2, 𝑖 = 1,… , 𝑛 (2)

In general, the problem consists of minimizing an objective function
𝑓 (𝒖) ∶ R2𝑛 → R subject to equality and inequality constraints, 𝒈𝑗 (𝒒, 𝒖) ∶
R2𝑛 × R2𝑛 → R, 𝑗 ∈ {1,… , 𝑟}, and 𝒉𝑘(𝒒, 𝒖) ∶ R2𝑛 × R2𝑛 → R, 𝑘 ∈
{1,… , 𝑠}, respectively. The functions 𝑓 , 𝒈𝑗 , and 𝒉𝑘 are continuously
differentiable, and they depend on the state, 𝒒 = [𝒒𝑇1 … 𝒒𝑇𝑛 ]

𝑇 ∈ R2𝑛,
and decision variables 𝒖 = [𝒖𝑇1 … 𝒖𝑇𝑛 ]

𝑇 ∈ R2𝑛.
The constrained optimization problem is formulated as:

minimize
𝒖

𝑓 (𝒖)

subject to
⎧

⎪

⎨

⎪

⎩

𝒈(𝒒, 𝒖) = 0
𝒉(𝒒, 𝒖) ≥ 0
𝒖𝑚𝑖𝑛 ≤ 𝒖 ≤ 𝒖𝑚𝑎𝑥

(3)

The resulting behavior of the group, induced by the optimal decision
variable 𝒖∗, should guarantee convergence of task errors while handling
conflicts among task constraints.

1.2. Related work

Among the vast research efforts for increasing the degree of auton-
omy of MVS, optimization-based control techniques have been success-
fully applied to steer MVS in complex situations. In Ayanian and Kumar
(2010), decentralized feedback controllers are synthesizes for multi-
agent teams subject to obstacle avoidance constraints where a linear
program is solved.

Tractable and scalable multi-agent control methods have been ex-
plored for large-scale networked agents (Derenick & Spletzer, 2007;
Rudd, Foderaro, Zhu, & Ferrari, 2017). In particular, numerical optimal
control and convex optimization techniques have been satisfactory
applied. In Rudd et al. (2017), a distributed optimal control problem is
studied to fulfill multiple cooperative objectives for many agents sub-
ject to obstacles and wind currents. The optimality conditions are used
to derive an indirect method known as generalized reduced gradient. It
turns to be computationally more efficient than direct methods based
on sequential quadratic programming. On the other hand, a variety
of convex optimization methods have been explored (Alonso-Mora
et al., 2017; Derenick & Spletzer, 2007; Mousavi, Moshiri, & Heshmati,
2015). In Derenick and Spletzer (2007) the optimal formation problem
for MVS is formulated with shape analysis techniques and second-
order cone programming. In order to be implemented in real-time,

the method relies on the solution of convex quadratic programs. More
recently, Alonso-Mora et al. (2017) proposed to approximate convex
regions with semi-definite programming to capture the collision-free
workspace. Within each convex region, the group formation remains
fixed, and a sequential convex program solves the multi-robot for-
mation control in environments populated with moving obstacles. It
is known that model-predictive control is able to greatly reduce the
computation of trajectory planning by means of prediction phases
with a time horizon (Mousavi et al., 2015). In that manner, a less
computationally demanding convex optimization problem is solved in
real-time for performing MVS tasks.

This work adopts HQP method, which is a rather different convex
optimization method to compute the instantaneous optimal control
for driving the MVS toward the group targets. It has demonstrated
good performance in the context of humanoid robotics where the
feasibility of task objectives and inequality constraints follows a strict
hierarchy (Escande et al., 2014; Herzog et al., 2016; Kanoun et al.,
2011). In MVS, many coordination constraints are naturally defined
as inequalities, such as obstacle avoidance and occupancy regions.
Different from the null-space approach (Antonelli & Chiaverini, 2006),
it is shown how HQP permits to introduce inequality constraints at any
hierarchical level. For extending the HQP to perform complex MVS
missions, a finite state machine is defined where each state solves
an instance of HQP with a given hierarchical structure, which is also
known as stack of tasks.

The remaining sections of the paper are organized as follows. In
Section 2, the formulation and taxonomy of MVS tasks is detailed. In
Section 3 a set of experiments with real MVS is carefully detailed to
verify the effectiveness of the proposed control scheme. Finally, some
concluding remarks and future directions are given in Section 4.

2. Formulation of multi-vehicle tasks

The definition of multi-vehicle coordination tasks follows the task
function approach (Samson, Borgne, & Espiau, 1991), which has been
introduced in the context of motion control for kinematically redundant
robotic manipulators. A multi-vehicle task function induces a motion
behavior for the group of vehicles. Each task involves the motion
coordinates of the whole group, or it could act on at least one vehicle
belonging to the group. It is referred to global or local task whether it
depends on more than one vehicle or just one of them, respectively.
From the constrained optimization perspective, a given task could be
naturally defined in terms of either equalities or inequalities. Thus, the
definition of task functions is sufficiently general to deal with one or
more agents within the group as well as to assign feasible regions with
mixed constraints, i.e. equality and inequality tasks, as it is illustrated in
Fig. 1.

For clarity purposes, Fig. 2 shows the properties of every single co-
ordination task that is described in the next sections. As it is observed,
obstacle avoidance tasks are composed by inequalities, and they could
be local or global. A reaching task could also be global or local, but it is
described as the convergence of an error function involving the current
and target values of the task.

2.1. Geometric formation

The task function to maintain a circular formation with the vehicles
is an example of a geometric formation task. In this particular case,
the task limits the feasible displacements of each agent over the cir-
cumference. This is a local task function because each vehicle reaches
the perimeter of a given circumference without the need to know the
location of other team members. The error function of the task is
defined as

𝑒𝑐𝑖 =
1
2
(𝒒𝑖 − 𝒑𝑐 )𝑇 (𝒒𝑖 − 𝒑𝑐 ) −

𝑟2

2
∈ R (4)

2
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Fig. 1. Task classification: the scope of coordination tasks could be global or local.
The first type of task functions involves more than one vehicle while the second type
deals with only one. In addition, a task is composed by a set of either equality or
inequality constraints depending on the nature of such task.

Fig. 2. Task properties: obstacle avoidance tasks are naturally defined as inequalities
since there is a forbidden area where the vehicles cannot penetrate. In contrast, the
equality tasks can be defined to reach a target by one or more vehicles. The constraints
related to maintain geometric formations are also designed as equality tasks.

where 𝑟 is the radius and 𝒑𝑐 = [𝑥𝑐 𝑦𝑐 ]𝑇 ∈ R2 the center of the circle. The
stack of circular tasks of the form (4) is 𝒆𝑐 = [𝑒𝑐1 𝑒𝑐2 ⋯ 𝑒𝑐𝑛 ]

𝑇 ∈ R𝑛, and
its time-derivative is �̇�𝑐 = 𝑱 𝑐𝒖 where the task Jacobian 𝑱 𝑐 =

𝜕𝒆𝑐
𝜕𝒒 ∈ R𝑛×2𝑛

is of the form:

𝑱 𝑐 = block diag
[

(𝒒1 − 𝒑𝑐 )𝑇 ⋯ (𝒒𝑛 − 𝒑𝑐 )𝑇
]

(5)

The task is formulated as a set of equality constraints since any vehicle’s
location different from the circular boundary is forbidden. The linear
system to be satisfied at each instant of time is:

𝑱 𝑐𝒖 = −𝛼𝑐𝒆𝑐 (6)

Note that an exponential error decrease is imposed (i.e. �̇�𝑐 = −𝛼𝑐𝒆𝑐)
where 𝛼𝑐 ∈ R+ is a small positive constant.

2.2. Enclosing the group in workspace regions

Unlike the task that makes the vehicles to reach the boundary of a
geometric shape, as described in Section 2.1, the enclosing task function
limits the navigation of the agents inside the area defined by a given
geometric shape. Any location outside that region is not allowed. The
error function associated to this task is defined as 𝒆𝑒 ∈ R𝑛 with its task
Jacobian 𝑱 𝑒 ∈ R𝑛×2𝑛. If the allowable navigation area represents the
interior of a circle, then the structure of the task error and its Jacobian
are the same as in (4) and (5), respectively. The only difference relies
on the type of constraints that compose the enclosing task:

𝑱 𝑒𝒖 ≤ −𝛼𝑒𝒆𝑒 (7)

where 𝛼𝑒 ∈ R+ is a small positive constant

Fig. 3. Individual obstacle avoidance task: the yellow area represents the obstacle.
The inner circle encapsulates the geometry of the obstacle. The circle at the middle
represents the security distance with radius 𝑑𝑠. The outer circle is defined by the radius
of influence 𝑑𝑖 with respect to the vehicles location 𝑞𝑖. The normal vector 𝒏 points to
the nearest distance between the obstacle and the vehicle.

2.3. Individual obstacle avoidance task

A critical task function required for safety vehicle navigation is ob-
stacle avoidance. This task is formulated as local to overcome potential
collisions between a given vehicle with the environment. Note that the
other agents as well as moving and static obstacles belong to the same
workspace. The obstacle avoidance task only depends on the vehicle
and the nearest obstacle. Thus, there is no need for the remaining
agents to share their locations. Fig. 3 illustrates the velocity damper
introduced in Faverjorn and Tournassoud (1987), which defines a set
of inequality task constraints for the vehicle to avoid near obstacles.

Security and influence distances around the obstacle are defined as
𝑑𝑠 and 𝑑𝑖, respectively. The inner circle is represented by a sequence of
points 𝒑𝑗 uniformly distributed over the circumference. The point 𝒑(𝒒𝑖)
is over the perimeter of 𝑖-vehicle such that the nearest distance between
the obstacle and 𝑖-vehicle is 𝑑𝑜𝑖 = ||𝒑(𝒒𝑖) − 𝒑𝑗 ||. The error function for
the obstacle avoidance task of 𝑖-vehicle is formulated as

𝑒𝑜𝑖 = 𝑑𝑜𝑖 − 𝑑𝑠 ∈ R (8)

and its time-derivative is

�̇�𝑜𝑖 = 𝒏𝑇 �̇�(𝒒𝑖) (9)

where 𝒏 is a unit vector defined as

𝒏 =
𝒑(𝒒𝑖) − 𝒑𝑗

𝑑𝑜𝑖
and �̇�(𝒒𝑖) =

𝜕𝒑
𝜕𝒒𝑖

�̇�𝑖

Therefore, the task Jacobian becomes:

𝑱 𝑜𝑖 = 𝒏𝑇
𝜕𝒑
𝜕𝒒𝑖

∈ R1×2 (10)

From (8) and (10), the inequality constraint defining the individual
obstacle avoidance task is:

𝑱 𝑜𝑖𝒖𝑖 ≥ −𝛼𝑜𝑖𝑒𝑜𝑖 (11)

where 𝛼𝑜𝑖 =
𝜉𝑜𝑖

𝑑𝑖−𝑑𝑠
∈ R, 𝑑𝑖 > 𝑑𝑠 and 𝜉𝑜𝑖 is a small positive constant

that regulates the convergence speed. For continuously differentiable
𝑑𝑜𝑖 , it is proved in Kanehiro, Lamiraux, Kanoun, Yoshida, and Lau-
mond (2008) that the minimum distance between the 𝑖-vehicle and the
obstacle constrained by the velocity damper never be smaller than 𝑑𝑠.

Notice that when this task is combined with others, such as reaching
a target location for instance, the vehicle keeps its motion along the
tangent direction with respect to the obstacle’s inner circle until the
potential collision is avoided.

It is worth highlighting when two vehicles are facing each other.
If this occurs, the agents consider each other as moving obstacles,

3
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Fig. 4. Group obstacle avoidance: the centroid of the team formation is used as
the control point to measure the distance to the nearest obstacle in yellow. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

which means that each of them performs its own individual obstacle
avoidance task. Since there is not an error function dependency, each
task remains local.

2.4. Group obstacle avoidance

Here, the individual obstacle avoidance task is extended to deal with
a group of vehicles. This task turns to be useful when the corresponding
set of agents is transporting a movable object without colliding with the
environment, i.e. the team formation to enclose the movable object is
maintained. The scope of the task is global since the position coordi-
nates of the group of vehicles are involved. The difference with respect
to the individual obstacle avoidance task is regarding the control point
to measure the distance to the nearest obstacle. Instead of using the
centroid of the vehicle as the control point, it is used the centroid of
the formation, as it is shown in Fig. 4.

Since the group obstacle avoidance task needs all the robots in-
volved in the formation, the task error in this case has the form

𝑒𝑜 = 𝑑𝑜 − 𝑑𝑠 ∈ R (12)

where 𝑑𝑜 = ||𝒑(𝒒) − 𝒑𝑗 ||, 𝒑(𝒒) is a point over the perimeter of a virtual
circle containing the group of vehicles as it is illustrated in Fig. 4. The
centroid of the formation is 𝒒 = [𝑥 𝑦]𝑇 ∈ R2 where

𝑥 = 1
𝑛

𝑛
∑

𝑖=1
𝑥𝑖 and 𝑦 = 1

𝑛

𝑛
∑

𝑖=1
𝑦𝑖

and the corresponding task Jacobian becomes

𝑱 𝑜 =
1
𝑛

[

𝒏𝑇 𝜕𝒑
𝜕𝒒

𝜕𝒒
𝜕𝒒1

⋯ 𝒏𝑇 𝜕𝒑
𝜕𝒒

𝜕𝒒
𝜕𝒒𝑛

]

∈ R1×2𝑛 (13)

Notice that 1
𝑛 represents the individual contribution of each robot to ac-

complish the task. Therefore, the inequality constraints are defined as

𝑱 𝑜𝒖 ≥ −𝛼𝑜𝑒𝑜 (14)

where 𝛼𝑜 = 𝜉𝑜
𝑑𝑖−𝑑𝑠

∈ R, 𝑑𝑖 > 𝑑𝑠 and 𝜉𝑜 is a small positive constant that
regulates the convergence speed.

2.5. Formation distribution

The vehicles can follow a desired variance [𝜎𝑥, 𝜎𝑦]𝑇 to achieve a
formation with the following task function

𝒆𝜎 = 1
𝑛

𝑛
∑

𝑖=1

[

(𝑥𝑖 − 𝑥)2

(𝑦𝑖 − 𝑦)2

]

−
[

𝜎𝑥
𝜎𝑦

]

∈ R2 (15)

The task is global due to the average position 𝑥 and 𝑦 of the
formation. The Jacobian is given by

𝑱 𝜎 =
2(𝑛 − 1)

𝑛2
[

𝑱 𝜎1 ⋯ 𝑱 𝜎𝑛

]

∈ R2×2𝑛 (16)

where

𝑱 𝜎𝑖 =
[

𝑥𝑖 − 𝑥 0
0 𝑦𝑖 − 𝑦

]

∈ R2×2 (17)

The team of vehicles are then spatially distributed by means of the
following equality constraint

𝑱 𝜎𝒖 = −𝛼𝜎𝒆𝜎 (18)

where 𝛼𝜎 ∈ R+ is a small positive constant.

2.6. Reaching a target

This is a local task for which the individual error function is

𝒆𝑔𝑖 = 𝒒𝑖 − 𝒒𝑑𝑖 ∈ R2 (19)

where the target 𝒒𝑑𝑖 in regulation regime is constant, otherwise it is a
time-varying function. The corresponding equality task for each vehicle
becomes

𝑱 𝑔𝑖𝒖𝑖 = −𝛼𝑔𝑖𝒆𝑔𝑖 + �̇�𝑑𝑖 (20)

where 𝛼𝑔𝑖 ∈ R+ is a small positive constant.

2.7. Cooperative tracking

This is a global task designed to reach a target by the group of
vehicles in a coordinated way while keeping the desired formation. It
consists of regulating the centroid of the formation toward the target

𝒆𝜇 = 𝒒 − 𝒒𝑑 ∈ R2 (21)

It is straightforward to adapt the task error for tracking purposes
when the target is a time-varying function:

�̇�𝜇 = 𝑱𝜇𝒖 − �̇�𝑑 (22)

where the task Jacobian is given by

𝑱𝜇 = 1
𝑛
[

𝑱𝜇1 ⋯ 𝑱𝜇𝑛

]

∈ R2×2𝑛 (23)

with

𝑱𝜇𝑖 =
[

1 0
0 1

]

∈ R2×2 (24)

An exponential convergence of the task error is imposed

𝑱𝜇𝒖 = −𝛼𝜇𝒆𝜇 + �̇�𝑑 (25)

where 𝛼𝜇 ∈ R+ is a small positive constant.

3. Experimental results

This section is devoted to evaluate the proposed MVS control
scheme. In particular, the validation has been performed by means of
two experiments with six vehicles (see Fig. 5). The first one illustrates
the trajectory tracking behavior of the group while maintaining the
formation and avoiding static obstacles in the environment. The second
experiment demonstrates a more complex group behavior in which
the vehicles are asked to cooperate for cleaning the workspace by
pushing different objects. The attached multimedia material contains
the recorded execution of both experiments.

The experimental setup is conformed by six differential drive mobile
platforms in an indoor environment. An optical motion capture system
composed by twelve fixed cameras is used to instantaneously obtain,
at 120 fps, the vehicle’s position as well as the placement of movable
objects, static and mobile obstacles in the workspace. The control law is

4
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Fig. 5. The scenario for experiment 1. The centroid of the group tracks a trajectory
(dotted black) while maintaining the formation (red circle) and avoiding obstacles
(yellow regions). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

computed in an external laptop with conventional resources. The Robot
Operating System (ROS) Indigo (Quigley et al., 2009), and Bluetooth
protocol serve to communicate with the networked system. All the
routines have been written in C++. For solving quadratic programs
it is used qpOASES (Ferreau, Kirches, Potschka, Bock, & Diehl, 2014)
with a damping factor of 0.5. The optimal control signals obtained
by the HQP serve as reference velocities to be tracked by the PID
controller of vehicle’s wheels. The control cycle of the MVS was 50 ms.
It considers the computation of task Jacobians, the HQP solver and the
communication through bluetooth protocol.

3.1. Computing the angular velocity reference

Since the vehicles are subject to nonholonomic constraints, it is
applied the classic input–output linearization to get the reference angu-
lar velocity of each vehicle (Oriolo, De Luca, & Venditteli, 2002). The
differential kinematics of each vehicle is of the form:

⎡

⎢

⎢

⎣

�̇�
�̇�
�̇�

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

cos 𝜃 0
sin 𝜃 0
0 1

⎤

⎥

⎥

⎦

𝜈 (26)

where 𝜈 = [𝑣 𝜔]𝑇 ∈ R2 contains the speed and angular velocity of
the vehicle, respectively. The pair [𝑥 𝑦]𝑇 ∈ R2 stands for its position
that corresponds to the midpoint of the wheel’s main axis, and 𝜃 ∈ S1

represents its orientation with respect to the horizontal axis of the
world’s reference frame. In particular, the coordinates of a reference
point located in front of the vehicle are selected:

𝑧 =
[

𝑧1
𝑧2

]

=
[

𝑥 + 𝐿 cos 𝜃
𝑦 + 𝐿 sin 𝜃

]

(27)

where 𝐿 is the length. Using (26), the time-derivative of the new
reference point is expressed as

�̇� = 𝐵(𝜃)𝜈 (28)

where

𝐵(𝜃) =
[

cos 𝜃 −𝐿 sin 𝜃
sin 𝜃 𝐿 cos 𝜃

]

and 𝜈 is the control input for the input–output linearized model. The
heading controller is obtained from (28):

𝜈 = 𝐵−1(𝜃)
[

−𝑘1 (𝑥 + 𝐿 cos 𝜃)
−𝑘2 (𝑦 + 𝐿 sin 𝜃)

]

(29)

where 𝑘1 and 𝑘2 are positive constant gains. For the experiments, 𝑘1 =
𝑘2 = 0.1. The reference angular velocity 𝜔 is then extracted from 𝜈 in
(29) for each vehicle.

Table 1
Hierarchical tasks of experiment 1.

Task Hierarchy Type of function Type of constraint

𝑒𝑜𝑖 1 Local Inequality
𝒆𝑒 2 Local Inequality
𝒆𝜎 3 Global Equality
𝒆𝜇 4 Global Equality

Table 2
Task parameters of experiment 1.

Task Parameters

𝑒𝑜𝑖 𝑑𝑖 = 0.5 m, 𝑑𝑠 = 0.3 m, 𝛼𝑜𝑖 = 0.08
𝒆𝑒 𝑟 = 0.8 m, 𝛼𝑒 = 2.5
𝒆𝜎 𝜎𝑥 = 0.3 m, 𝜎𝑦 = 0.5 m 𝛼𝜎 = 2.5
𝒆𝜇 𝛼𝜇 = 4

3.2. Trajectory tracking behavior of the multi-vehicle system

In this experiment, six vehicles are asked to track a reference tra-
jectory while maintaining the formation and avoiding static obstacles.
In addition, the vehicles are constrained to move inside a circular area
where its center is a time-varying point. The scenario is shown in Fig. 5.
The hierarchical task functions follow the order 𝑒𝑜𝑖 ≻ 𝒆𝑒 ≻ 𝒆𝜎 ≻ 𝒆𝜇 .
Table 1 summarizes the taxonomy of task functions involved for this
experiment.

As it is depicted in Fig. 5, the black boxes inside the yellow area
represent fixed obstacles. Each vehicle is considered itself as a mobile
obstacle. Thus, the first hierarchical task is 𝑒𝑜𝑖 , i.e., the individual
obstacle avoidance task. The geometric formation task 𝒆𝑒 belongs to the
second hierarchical level. It is illustrated by the red circle in Fig. 5. This
implies that the agents are not allowed to move outside the red circle.
The desired distribution of vehicles inside the red circle corresponds to
the third hierarchical level. It is performed by the variance task function
𝒆𝜎 . In Fig. 5, the desired distribution is expressed in terms of 𝑥 and 𝑦
axes with blue arrows. Note that the variance depends on the position
of every agent. At the lowest hierarchical level the group trajectory
tracking 𝒆𝜇 is solved. The reference trajectory is represented by a black
dotted rectangular path parametrized with respect to time. The tracking
error is measured with the centroid of the group formation 𝒒.

Fig. 6 illustrates the desired effect of the group behavior when each
task comes to play. The individual obstacle avoidance task 𝑒𝑜𝑖 makes
the agents spread out each other.

At the second hierarchical level, the task 𝒆𝑒 attracts and keeps the
vehicles inside the geometric formation (see Fig. 6(b)).

At the third hierarchical level, the task 𝒆𝜎 distributes the agents
within the allowable area by imposing a desired variance (see Fig. 6(c)).
Finally, the task with the lowest hierarchy 𝒆𝜇 is in charge of tracking
the desired trajectory by controlling the center of mass of the group
(see Fig. 6(d)).

It is worth to mention that the formation could be broken within
a time interval if any vehicle needs to perform an obstacle avoidance.
This could happen because 𝑒𝑜𝑖 has the highest hierarchy. The param-
eters to execute the task functions for this experiment are given in
Table 2.

Figs. 7 and 8 show the evolution of task errors and control profiles,
respectively.

During the MVS execution, the first obstacle avoidance occurred
at 𝑡 = 53 s as depicted in Fig. 9. Although the task errors in Fig. 7
increased due to the obstacle avoidance, the formation is recovered.
Also, within the time interval (91.2 s, 93.2 s), vehicle 6 suffered an
external disturbance represented by ∗⟶ × in Fig. 9. The vehicles
1, 2 and 4 reacted by trying to compensate the desired distribution.
Regardless of the undesired effect of obstructions and perturbations,
the task errors converged to zero as it is observed in Fig. 7.

Note that the first obstacle avoidance occurred at 𝑡 = 53 s as
depicted in Fig. 9. Although the task errors in Fig. 7 increased due
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Fig. 6. Group behavior with hierarchical task functions. Each task induces specific group behaviors. It is illustrated, from left to right, the individual obstacle avoidance, enclosing
the group, formation distribution, and cooperative tracking tasks, respectively.

Fig. 7. The task error profiles for experiment 1. Task errors are consistent with the
imposed hierarchical structure. Thus, only when obstacles and the external perturbation
appeared, the errors increased.

Fig. 8. Control profiles for experiment 1. The top-row shows the control profiles
corresponding to six vehicles along the 𝑥-axis. Bottom-row depicts the control profiles
along 𝑦-axis. The velocity limits are ±0.5 m∕s.

to the obstacle avoidance, the formation is recovered. Also, within the
time interval (91.2 s, 93.2 s), vehicle 6 suffered an external disturbance
represented by ∗⟶ × in Fig. 9. The vehicles 1, 2 and 4 reacted by try-
ing to compensate the desired distribution. Regardless of the undesired
effect of obstructions and perturbations, the task errors converged to
zero as it is observed in Fig. 7 and the control profiles remain below
the boundaries defined by the velocity limits of the vehicles at ±0.5 m∕s
as depicted in Fig. 8.

3.3. Cleaning the workspace by pushing

The multi-vehicle behaviors related to the second experiment high-
light the flexibility and scalability of the proposed optimization-based
control scheme. In this case, the group composed by five vehicles was
asked to transport three movable objects located within the workspace.
The sixth vehicle played the roll of an moving obstacle. Fig. 10 shows
the scenario. The mission for the group was to clean the workspace
by pushing movable objects. The mission needed individual and group
obstacle avoidance. Also, once the group finished to relocate the ob-
jects, each vehicle reached a target location represented by red circle in
Fig. 10. A finite state machine was employed to represent the mission.
Each state was composed by a stack of hierarchical tasks while discrete
events triggered state transitions. The finite state machine is illustrated
in Fig. 11. In particular, the hierarchical structures 𝑒𝑜𝑖 ≻ 𝒆𝑐 ≻ 𝒆𝑔𝑖 ,
𝑒𝑜 ≻ 𝒆𝑐 ≻ 𝒆𝑔𝑖 ≻ 𝒆𝜇 and 𝑒𝑜𝑖 ≻ 𝒆𝑔𝑖 correspond to States 1, 2 and 3,
respectively. It is important to note that the task function 𝒆𝑔 is global
since it regulates the centroid of the group 𝒒 toward a desired position.
Note that the task parameters to perform this experiment are given
in Table 3.

The scenario of experiment 2 is shown in Fig. 12(a). The first 76 s
of the mission execution correspond to Fig. 12(b). It is observed how
the vehicles reached the desired geometric formation, and the diameter
of the circumference 𝑑1 shrank gradually until the first movable object
was wrapped by the group. The shrinking process was triggered when
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Fig. 9. Execution of group behaviors for experiment 1. The squares and circles represent the initial and final position of each vehicle. Dotted gray circles represent the desired
formation. Yellow circles 𝑂1 𝑂2 and 𝑂3 represent three static obstacles. The task functions are performed with the following hierarchical levels 𝑒𝑜𝑖 ≻ 𝑒𝑒 ≻ 𝑒𝜎 ≻ 𝑒𝜇 . Individual
obstacle avoidance happened at 53 and 123 s. Between 91 and 93 s an external perturbation is induced. In particular, a manual displacement of vehicle 6 was performed.

Fig. 10. The scenario for experiment 2. The MVS is asked to clean the workspace by
pushing three movable objects represented by yellow circles (1, 2, 3). The fourth object
enclosed by blue dotted contour represents a static obstacle. The light yellow circles
represent the desired placements where the movable objects have to be relocated. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Fig. 11. Finite state machine of experiment 2. Once the group wrapped the object in
State 1, it switched to State 2 by 𝑇1−2 to transport the object toward the goal location.
Then, the group switched to State 1 by 𝑇2−1 to repeat the task with the second movable
object. Once the workspace is cleaned, the vehicles switched to State 3 by 𝑇2−3.

the error between the centroid of group 𝒒 and the object position
O1 was small enough, i.e., ‖

‖

𝒒 − O1
‖

‖

< 𝜖, where 𝜖 = 0.04 m in this
experiment. The diameter 𝑑1 shrank until it reached a desired value 𝑑2.
The ×-markers represent the position of the vehicles when 𝑑1 reached
𝑑2. Then, the state transition was activated 𝑇1−2.

Fig. 12(c) shows the execution of experiment 2 from 76 to 130
s. A critical group behavior within this time interval was to avoid
obstacles while transporting the movable object. For this, the group
obstacle avoidance was performed while the centroid of the formation

Table 3
Parameters of experiment 2.

Tasks Parameters

𝑒𝑜𝑖

𝑑𝑖 = 0.5m,
𝑑𝑠 = 0.7m,
𝛼𝑜𝑖 = 0.003

𝒆𝑜
𝑑𝑖 = 0.5m,
𝑑𝑠 = 0.7m,
𝛼𝑜 = 0.05

𝒆𝑐
▵⟶ □

𝑟 = 1.2 m;
𝛼𝑐 = 0.1

□ ⟶ +
𝑟 = 1.2 ∶ 0.52 m;
𝛼𝑐 = 1.0

𝒆𝑔𝑖

▵⟶ □ 𝛼𝑔𝑖 = 0.1
□ ⟶ + 𝛼𝑔𝑖 = 1.0
▵⟶ ◦ 𝛼𝑔𝑖 = 0.7

𝒆𝜇 𝛼𝜇 = 1.2

was regulated toward the desired location, i.e. the movable object O1
was relocated to O1𝑑 . Then, the group switched to State 1 for wrapping
the second movable object O2 in a cooperative manner. The event that
activated the state transition 𝑇2−1 was the error condition ‖

‖

‖

O1 − O1𝑑
‖

‖

‖

<

𝜖. In Fig. 12(d) is depicted the next time interval of the execution that
goes from 130 to 229 s. It is observer that arbitrary displacements of
O3 and O4 were performed by a human to illustrate that the proposed
optimization-based control is able to deal with such modifications
without altering the purpose of the mission, i.e., wrapping O2 to be
transported to O2𝑑 .

In Fig. 12(e) the group had to avoid a moving obstacle without
breaking the formation at 261 s. The trajectory of the moving obstacle
is represented by ∗⟶ ◊, which caused a decrease of the group
velocity to avoid collisions. Then, the group switched again to State
1 for wrapping O3. The time window from 291 to 396 s is depicted
in Fig. 12(f). In particular, it can be observed how vehicle 3 had to
avoid potential collisions against vehicles 1 and 2. For this, vehicle
3 momentary violated the geometric formation by passing thought
the interior of it. Such behavior was possible due to the hierarchical
structure together with the slack variables, i.e. individual obstacle
avoidance was at the highest hierarchy.

Fig. 12(g) depicts the execution from 396 to 454 s. The important
feature here was an arbitrary displacement of O3 while the group was
transporting it. That event activated 𝑇2−1 for wrapping again O3 at its
new location. In Fig. 12(h) is shown the last part of the experiment
that covered the time window from 454 to 613 s. It is observed that

7



H.M. Pérez-Villeda, G. Arechavaleta and A. Morales-Díaz Control Engineering Practice 94 (2020) 104206

Fig. 12. Execution of group behaviors for experiment 2. Solid green boxes represent the movable objects, and blue boxes refer to the desired locations. Triangle marks represent
the initial configuration of the MVS. The black circle corresponds to the desired geometric formation, whereas the small circles represent the vehicle target positions over the
geometric formation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

the vehicles switched to State 2 for transporting O3 to its desired
location × ⟶▵ while avoiding O4. The MVS accomplished the mission
at 510 seconds. Thus, it switched to State 3 to go toward the home
configuration without collisions ▵⟶ ◦. Finally, Fig. 13 depicts the
control profiles for this experiment. As it can be observed, control
signals are below the velocity limits of ±0.5 m∕s.

4. Conclusion

In this paper, it is proposed an optimization-based control scheme
for coordinating MVS in indoor environments. In particular, hierarchi-
cal quadratic programs are formulated to solve complex multi-vehicle
tasks, such as object transportation, obstacle avoidance, tracking mov-
ing targets, reaching goal positions, keeping a given formation, among
the most important. The underlying optimization solves a cascade of
convex quadratic programs where equality and inequality constraints
are satisfying following a strict hierarchy. In addition, complex missions
assigned to the group can be designed with finite state machines that
embed several stack of tasks.

It has verified the performance of the proposed controller with two
experiments with six vehicles to track a moving target while keeping a
formation and avoiding obstacles. A more complex mission has been
successfully executed for cleaning the workspace with cooperative
multi-vehicle tasks.

As future work, it is planned to extend the optimization-based
controller to cope with consensus tasks within a decentralized setting
as it has been suggested with the null-space approach in Trujillo et al.
(2018).
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Fig. 13. Control profiles for experiment 2. The top-row shows the control profiles
corresponding to five vehicles along the 𝑥-axis. Bottom-row depicts the control profiles
along 𝑦-axis. The velocity limits are ±0.5 m∕s.
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