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Abstract— This paper proposes an approach for the adapta-
tion of robot trajectories taken from a set of demonstrations.
The problem is formulated as a constrained optimization
problem where the set of demonstrations are used as target
values to build a Quadratic Program (QP). The constraints
constitute the adaptation’s conditions of the new trajectory,
e.g. new initial or final points or keep the trajectory within a
specific range. The performance of our approach is verified in
the adaptation of a set of demonstrations taken from a Panda
robot for new conditions.

I. INTRODUCTION

Imitation learning approaches aim to generalize tasks to
novel situations. Most approaches are designed under a
learning framework, where a given criteria is minimized.
A variety of approaches exist where a set of task demon-
strations are used to train a given model to provide gen-
eralization for new different conditions. Some representa-
tive approaches within this field are i.g. Task-Parameterized
Gaussian Mixture Model (TP-GMM) [2] that considers as
task parameters, the homogeneous transformations between
arbitrary reference frames. By observing human demonstra-
tions from each of these frames the robot is able to learn
the spatial relationship between start, goal, and via points
in the trajectory. Conditional Neural Movement Primitives
(CNMPs) Seker et al. [3] generate motion trajectories by
sampling observations from the training data and predicting a
conditional distribution over target points, e.g. robot position,
forces, and any task parameters. However, CNMPs have
limited extrapolation capabilities. A possibility to improve
the extrapolation performance is to combine imitation and
reinforcement learning [1]. In order to maximize the gener-
alization to new conditions, these models require a training
process aimed to maximize the adaptation capabilities by
minimizing a given loss function. However, there is no way
to guarantee the conditions will be fully reached for the
adaptation. Besides, the nature of some manipulation tasks
requires reaching a certain level of precision for the new
conditions to be adapted to. In this paper, we tackled the
adaptation problem by a constrained optimization approach
that uses a set of demonstrations as target points to build
a linear regression model using a set of Basis Functions
(BF). The conditions to meet by the adaptation are defined as
constraints of the QP. In this way, it is possible to satisfy the
new conditions that requires the adaptation. Our approach
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allows defining equality and inequality constraints at both
position and velocity levels. Our approach is validated in the
adaptation of a set of demonstrations taken from a Panda
robot, where the adaptations involve different equality and
inequality constraints at the same time.

II. METHOD

Given a set of N observations D = [{t1,y1} , · · · ,{tN ,yN}]
where t ∈ R defines the independent variable and y ∈ Rd

the target values of dimension d. The goal is to find a set of
parameters w ∈RM that minimize the sum of squared errors:

ED(w) =
1
2

N

∑
n=1

(y(tn,w)−yn)
2 (1)

The model can be defined as a linear combination of
fixed, nonlinear BF ϕ(t), i.e., y(t,w) = w0+∑

M−1
j=1 w jφ j(t) =

wTϕ(t), where M−1 is the number of BF.
The regression problem can be rewritten as a QP that

allows to impose constraints, in the form

minimize
w∗

1
2 wTPw+qTw

s.t.


yl ≤ Gw ≤ yu

Aw = yA
ẏl ≤ Ġw ≤ ẏu

(2)

where w∗ is the optimal vector that minimize the Sum of
squared errors (SSE) given in Eq. 1; P = 2MTM, and q =
−2MTc defines the standard form expressions, M = ΦTΦ
and c =ΦTy; where y ∈ RdN is the stacked vector of target
values and Φ ∈ RN×M is know as the design matrix

Φ=


1 φ1(t1) ... φM−1(t1)
1 φ1(t2) ... φM−1(t2)
...

...
...

...
1 φ1(tN) ... φM−1(tN)

 . (3)

Aw = yA defines the equality constraints at the position
level constructed from a predefined set of P data points
DA = {tA,yA}, where yA ∈ RP×d defines the desired values
of the regression evaluated at tA ∈RP. The matrix A∈RP×M

is calculated as A =Φ(tA). On the other hand, yl ≤ Gw ≤ yu
represent the inequality constraints at the position level and
is constructed from a set of Q data points DG = {tG,yl ,yu},
where yl ,yu ∈RQ×d are the lower and upper boundaries data
points respectively and the matrix G ∈ RQ×M is calculated
as G = Φ(tG). The inequality constraints are used to keep
the regression values evaluated at tG ∈ RQ within the range
[yl ,yu]. Finally, ẏl ≤ Ġw ≤ ẏu represents the inequality
constraints at velocity level that are defined from a set of



V datapoints ḊG = {tv, ẏl , ẏu}, where ẏl ,ẏu ∈ RV×d are the
lower and upper velocity boundaries datapoints respectively
and the matrix Ġ is calculated as Ġ = Φ̇(tv), where Φ̇ ∈
RV×M defines the partial derivatives of the BF Φ̇ = ∂ϕ(x)

∂x .
The velocity inequality constraints are used to keep the
velocity of the regression evaluated at tv within the range
[ẏl , ẏu]. This is specially useful to generate smooth trajectory
motions in the reproduction of the adapted task. By solving
the QP in Eq. 2, it is possible to find the optimal vector w∗

that minimizes the sum of squares errors (1) and satisfies at
the same time the equality and inequality constraints (2).

III. RESULTS

This section presents the results obtained from apply-
ing our method to robot trajectory adaptation. For this
experiment, we have used a dataset of 9 different 2D
trajectories with 700 data points each, forming a dataset
D = {t,y} where t ∈ R2700, with values within the range
[0,1]; whereas the target values are y ∈ R2700×2. The
used Basis Functions is conformed by a set of 18 func-
tions φ(t) = [1, t,sin(α0t),cos(α0t), · · · ,sin(α7t),cos(α7t)]
with αi ∈ {0.1,1,5,10,20,30,40,50}. The set of BF and
their parameters were selected empirically motivated from
the Fourier BF.

The first experiment is shown in the Fig. 1 Case I.
The adaptation includes new initial and final points of the
trajectory which are defined as two equality constraints for
t = 0 and t = 1, indicated for purple markers. We have
also defined a set of inequality constraints in Y axis as
{t,yu = 0.055}, (blue light area), used to keep the Y axis
trajectory values lower than yu. The plot presents the results
for three different tuples of initial and final points. In these
results, the adapted trajectory fully satisfy the new initial and
final conditions as well as the imposed inequality constraint
in the Y axis, and most importantly, keeping the shape of
the trajectory, which means, the new obtained trajectory has
a similar shape that the demonstrations.

In Fig. 1 Case II a second adaptation case is shown using
the same data set. Here, we present a comparison between
two adapted trajectories, the orange one is adapted only in
position and the blue one is adapted in position and velocity.
The conditions of adapted position for both trajectories are
the same, indicated by the purple markers. For the blue
adapted trajectory, the velocity constraint is defined within
the range [−0.55,0.55]. The velocity for both trajectories
is shown in Fig. 1c). The orange trajectory moves freely
due to the lack of constraint, whereas the blue trajectory
remains within the imposed velocity range defined in the
inequality constraint. In Fig. 1b) the respective position
trajectories are shown. Both trajectories satisfied the initial
and final adaptation conditions and both keep the shape of
the trajectory overall. However, the blue trajectory will be
the one that produces smoother motions in the reproductions
due to the velocity constraints.
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Fig. 1. Case I: Adaptation for new initial and final positions with a
constraint in the Y axis. Case II: Adaptation for a new initial and final
position with velocity constraints.

IV. CONCLUSIONS
The proposed approach addresses the adaptation problem

for new conditions at both position and velocity level for a set
of demonstrations. The approach is defined as a regression
problem and handled as Constrained Quadratic Optimization,
where the criteria to be minimized is defined by a sum-
of-square errors of data points of the demonstrations, and
the constraints represent the new adaptation conditions. The
approach is validated in a set of trajectories taken from a
Panda Robot. The adaptation involves new initial and final
points as well as velocity constraints. The results show our
proposed approach can fully satisfy the new imposed adap-
tation conditions while keeping the shape of the trajectory
overall. The approach has important relevance 1) to scenarios
with continuous changes that demand continuous adaptations
of the trajectory, 2) to adaptations that require the shape
of the trajectory to be preserved, and 3) to trajectories that
demands high level of accuracy for the new adapted condi-
tions. Our approach considers the following future work: I)
Introduction of slack variables in the optimal solution vector,
which are essential to relax the constraints and guarantee
feasible solutions of the QP. II) Extend the adaptation to
3D trajectories and reproduce them in real scenarios. III)
Comparison with similar methods e.g. CNMP, TP-GMM.
IV) Explore some methods for better selection of the BF.
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